Динамика поступления фосфора валового в Невскую губу со стоком реки Большая Нева и её рукавов Хмелинин А. А.

Хмелинин Александр Александрович / Khmelinin Alexandr Alexandrovich - магистр, факультет экологии и природопользования, Российский государственный гидрометеорологический университет, г. Санкт-Петербург

Аннотация: определены негативные последствия процесса антропогенного эвтрофирования. В обобщенном виде представлены результаты исследований процесса эвтрофирования водоемов. Рассчитаны величины суммарного поступления фосфора валового в Невскую губу со стоком рек Большая Нева, Большая Невка, Малая Нева и Малая Невка. Показана необходимость более детального прогнозирования эвтрофирования.

Ключевые слова: эвтрофирование, биогенные элементы, сине-зеленые водоросли, водные объекты, экологические проблемы.

Развитие процесса антропогенного эвтрофирования приводит ко многим неблагоприятным последствиям с точки зрения водопользования и водопотребления (развитие «цветения» и ухудшения качества воды, появление анаэробных зон, нарушение структуры биоценозов и исчезновение многих видов гидробионтов, в том числе ценных промысловых рыб). Кроме того, в период цветения синезеленые водоросли производят сильнейшие токсины (алкалоиды, низкомолекулярные пептиды и др.), которые сами не используют, но они, попадая в водную толщу, представляют опасность для живых организмов и человека. Эти токсины могут вызывать цирроз печени, дерматиты у людей, отравление и гибель животных.

Между эвтрофированием и загрязнением имеется существенная разница, заключающаяся прежде всего в том, что загрязнение обусловлено сбросом вредных веществ, подавляющих биологическую продуктивность водоемов, а эвтрофирование повышает эту продуктивность [2]. По мнению Г. Г. Винберга [1], антропогенное эвтрофирование нельзя отождествлять с загрязнением до тех пор, пока суммарное содержание азота и фосфора не превысит концентрацию углерода в водном объекте. Если такого превышения не отмечается, то можно говорить о естественном старении или ускорении эвтрофирования водного объекта.

Основными источниками загрязнения водоемов биогенными веществами, приводящими к эвтрофированию, служат смыв азотных и фосфорных удобрений с полей и сброс сточных вод, в том числе и прошедших биологическую очистку.

Основные экологические проблемы Невской губы обусловлены процессами эвтрофирования и загрязнения вредными веществами.

В этой связи цель данного исследования заключается в оценке динамики поступления фосфора валового в Невскую губу со стоком реки Невы и ее рукавов. Необходимость такой оценки обусловлена, в частности, тем, что 15 ноября 2007 г. в г. Краков (Польша) странами-членами Хельсинкской Комиссии по защите морской среды Балтийского моря (ХЕЛКОМ) – Финляндией, Швецией, Россией, Данией, Польшей, Германией, Латвией, Литвой и Эстонией, – был предварительно согласован «План действий по Балтийскому морю» (ПДБМ), который является долгосрочным стратегическим документом, направленным на сокращение загрязнения морской среды и восстановление благополучного экологического состояния Балтики к 2021 г. [4].

ПДБМ обозначил приоритетные направления действий для сокращения поступления азота и фосфора в Балтийское море, которые включают:

- меры по введению жестких требований по доочистке сточных вод:
- запрет на использование моющих средств, содержащих фосфор;
- проведение жесткой политики ведения сельского хозяйства, в части, касающейся использования удобрений, животноводческих кормов, обращения с отходами ферм, вспашки, основанной на современных технологиях, преобразования пахотных земель в луга и т.д.

Среди множества биогенных элементов, влияющих на процесс эвтрофирования (азот, кислород, углерод, сера, кальций, калий, хлор, железо, марганец, кремний и др.), для водоемов умеренной зоны решающую роль играет фосфор.

В данной работе были использованы первичные данные мониторинга с 1979 г. по 2015 г., регулярно проводимого Санкт-Петербургским центром по гидрометеорологии и мониторингу окружающей среды с региональными функциями.

При проведении исследования были рассчитаны величины суммарного поступления (Q) фосфора валового в Невскую губу со стоком рек Большая Нева, Большая Невка, Малая Нева и Малая Невка (таблица 1). Расчеты проведены по следующей формуле [3]:

 $Q = 0.0315 \cdot C_{C\Gamma} \cdot R_{C\Gamma},$

где Q — поступление, тонн/год, $C_{C\Gamma}$ — среднегодовая концентрация биогенного элемента в рассматриваемом водотоке, мкг/дм³, $R_{C\Gamma}$ — среднегодовой расход воды, м³/с.

Таблица 1. Динамика поступления фосфора валового в Невскую губу со стоком реки Невы и ее рукавов

Год	Поступление, Q, тонн		
	Фосфор валовой		
1979	3495		
1980	2876		
1981	2274		
1982	5283		
1983	5903		
1984	3672		
1985	4159		
1986	3870		
1987	1339		
1988	3605		
1989	4404		
1990	4509		
1991	3334		
1992	4337		
1993	4732		
1994	3051		
1995	4990		
1996	3171		

1997	2863
1998	3022
1999	2721
2000	3945
2001	2863
2002	4326
2003	2875
2004	4083
2005	5839
2006	2711
2007	1724
2008	2916
2009	2279
2010	2739
2011	2127
2012	1416
2013	2002
2014	2165
2015	1426

Таблица 2. Среднегодовое поступление биогенных элементов в Невскую губу со стоком реки Невы и ее рукавов (усредненные данные)

Биогенный элемент	Период	Среднее	Минимальное-максимальное
	осреднения	поступление,	поступление, тонн/год
		тонн/год	
Фосфор валовой	1979-2015	3325	1339-5903

При анализе данных, представленных в таблице 1, было выявлено наличие трендов снижения поступления фосфора валового в Невскую губу со стоком реки Невы и ее рукавов (рис. 1).

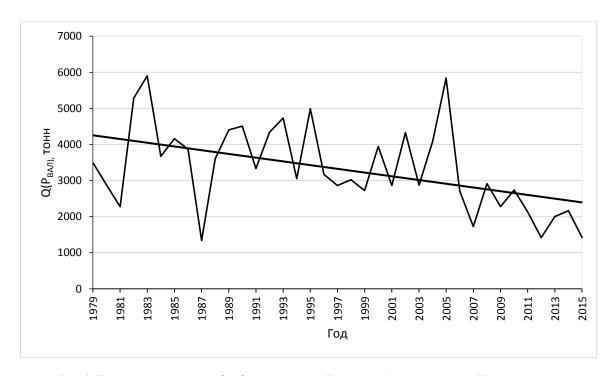


Рис. 1. Динамика поступления фосфора валового в Невскую губу со стоком реки Невы и ее рукавов

Общее признание в качестве основных стимуляторов эвтрофирования получили азот и фосфор (лимитанты первичной продукции). Общеизвестно также, что содержание различных форм фосфора и азота в водотоках и водоемах возрастает вследствие поступления промышленных, коммунальных и сельскохозяйственных стоков, так как в составе любых стоков содержатся азот и фосфор различного происхождения. Однако разделить эти вещества на появившиеся в результате деятельности человека и природные (в результате механической и химической эрозии и других природных процессов) существующими аналитическими методами невозможно. Между тем знание антропогенных источников эвтрофирующих веществ и количественная оценка их поступления в водотоки и водоемы открыли бы новые, более широкие возможности прогноза эвтрофирования, нарушения водных экосистем.

В связи с изложенным возникает актуальная задача по оценке природных (фоновых) концентраций биогенных элементов в водных объектах. Для решения этой задачи необходима постановка специальных научно-исследовательских работ.

Литература

- 1. Винберг Г. Г., Бауэр О. И. Бюллетень МОИП. Отделение биологии, 1971. Т. 26.
- 2. *Дмитриев В. В., Фрумин Г. Т.* Экологическое нормирование и устойчивость природных систем. Учебное пособие. СПб.: Наука, 2004.
- 3. *Фрумин Г. Т., Германова А. В.* Динамика поступления биогенных элементов в Финский залив со стоком российских рек // Финский залив в экосистеме Северо-Запада России. Сборник научных трудов. СПб.: ИПК «Прикладная экология», 2012. С. 185-200.
- 4. HELCOM Baltic Sea Action Plan // HELCOM Ministerial Meeting. Krakow, Poland, 15 November 2007. 101 p.