ИЗМЕНЕНИЕ ТЕМПЕРАТУРЫ СТЕНКИ ГОРИЗОНТАЛЬНЫХ И НАКЛОННЫХ ТРУБ В ЗАВИСИМОСТИ ОТ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ПРИ ТУРБУЛЕНТНОМ ТЕЧЕНИИ

Н-ГЕПТАНА И СВЕРХКРИТИЧЕСКИХ ДАВЛЕНИЯХ

Мамедов Ш.Г.¹, Ширинова А.Я.², Абдуллаева Г.К.³

¹Мамедов Шикар Гаджи оглы — доцент, кандидат технических наук;
²Ширинова Айнур Яшар кызы - кандидат технических наук, заведующая лабораторией, кафедра электротехники и энергетики,
Сумгаитский государственный университет,
г. Сумгаит;

³Абдуллаева Гульшан Камал кызы - кандидат технических наук, доцент, кафедра теплотехники,

Азербайджанский государственный университет нефти и промышленности, г. Баку, Азербайджанская Республика

Аннотация: известно, что на практике процессы теплообмена протекают в трубах при различных их положениях. В связи с этим представляет интерес исследование закономерностей теплообмена при течении жидкости в горизонтальных и наклонных трубах. На основании экспериментальных исследований теплоотдачи н-гептана при различных положениях трубы и турбулентном режиме течения уже доказано существование улучшенного теплообмена в области $p > p_{kp} u$ $t_c \ge t_m [1,3, c.45,38]$. Для того, чтобы выявить влияние направления течения жидкости и положения трубы необходимо сопоставить данные, полученные при одинаковых условиях.

Ключевые слова: теплообмен, тепловой поток, плотность, псевдокритическая температура, теплоотдача.

На основе анализа опытных данных при подъемном и опускном движениях н-гептана в вертикальной трубе установили, что характер изменения графика зависимости $t_c=f(q)$ сложный и независимо от направления течения жидкости наблюдается первый и второй улучшенные режимы теплоотдачи соответственно в условиях $t_c \approx t_m$ и $t_c >> t_m$.

Рассмотрим характер изменения температуры стенки в зависимости от плотности теплового потока при течении н-гептана в горизонтальной трубе.

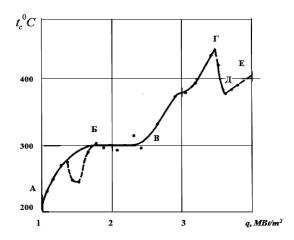


Рис. 1. Зависимость $t_c=f(q)$ для н-гептана при P=3,5 МПа, $\rho\omega=2100$ кг/м 2c , $t_{sc}^{ex}=12^0C$

На рис.1. представлена указанная зависимость для турбулентного течения н-гептана в горизонтальной трубе при P=3.5MPa, $t_{\infty}^{\rm ex}=12^{0}\,C$ и $\rho\omega=2100$ кг/м²с. Она построена по показаниям термопар, расположенных на расстоянии $\frac{x}{d}\approx 60$ от входа в трубу [2, с.68]. Из рисунка следует, что характер изменения температуры стенки от плотности теплового потока сложный, как и при вертикальном положении трубы в области $t_{c}\approx t_{m}$ и $t_{c}>>t_{m}$ наблюдается резкая интенсификация теплообмена.

Графика зависимости $t_c = f(q)$ при P = 3.5 и 5.0 МПа, построенные по показаниям термопар, расположенных на расстоянии $\frac{x}{d} = 60$ от входа в трубу, показывают что общий характер изменения кривых одинаков и сложен (рис.2).

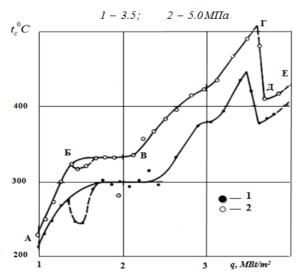


Рис. 2. Зависимость $t_c = f(q)$ при движении н-гептана в горизонтальной трубе

Влияние давления жидкости на теплообмен, и следовательно расслоение экспериментальных кривых и начальный момент наступления улучшенного режима теплоотдачи наблюдается при достижении температурой внутренней поверхности стенки псевдокритической температуры исследуемой жидкости. На участке БВ графика с увеличением плотности теплового потока от ~1.30 до $2.30 \mathrm{MBT/m^2}$ температура стенки практически остается постоянной и равной псевдокритической температуре. С переходом t_c через t_m исследуемой жидкости увеличение плотности теплового потока приводит к повышению температуры стенки, в результате чего образуется участок ВГ. При высоких температурах стенки $\left(t_c > 430^{0} C\right)$ незначительное увеличение плотности теплового потока приводит к падению температуры стенки от значения соответствующего точке Γ , до значения в точке Γ , а затем постепенному росту её.

Момент падения температуры стенки при различных давлениях соответствует значению плотности теплового потока $q = 3.50\,\mathrm{MBt/m^2}$. Отметим, что интервал расстояния кривых по оси ординат на участке БВГ графиков зависимости $t_c = f(q)$ при различных давлениях в горизонтальных трубах может определяться как разность псевдокритических температур, т.е.

$$\Delta t = (t_m)_{BB\Gamma}^{5,0M\Pi a} - (t_m)_{BB\Gamma}^{3,5M\Pi a} \tag{1}$$

На рис.3 представлены графики зависимости $t_c = f(q)$ в опытах с н-гептаном, построенные по показаниям двух термопар, расположенных соответственно на расстояниях $\frac{x}{d} = 29.0\,$ и 78.5 от входа в трубу [2, с.71].

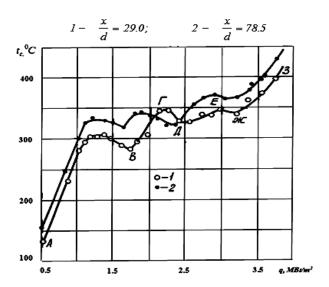


Рис. 3. Зависимость $t_c = f(q)$ для горизонтального положения трубы при $P = 4.0~{\rm MHz}$,

$$\rho\omega = 1730 \, \kappa c / M^2 c$$
, $t_{sc}^{ex} = 18^0 C$

Из рисунка видно, что на участке АБ с увеличением плотности теплового потока температура стенки возрастает приблизительно по прямолинейному закону. На участке БВ этой зависимости с увеличением плотности теплового потока наблюдается некоторое снижение температуры стенки. Например, при $q \approx 1.20\,\mathrm{MBt/m^2}$ значение температуры стенки составляет $306^0\mathrm{C}$, а при $q \approx 1.75\,\mathrm{MBt/m^2}$ точка В – $282^0\mathrm{C}$, т.е. $t_c^B - t_c^B = 24^0\,\mathrm{C}$ (кривая 1). Затем, после точки В с увеличением q, значение t_c вновь возрастает, подчиняясь прямолинейному закону (участок ВГ), аналогично участку АБ. Далее, после точки Г с увеличением плотности теплового потока t_c несколько снижается (участок ГД) и процесс теплоотдачи вновь интенсифицируется. По мере дальнейшего увеличения плотности теплового потока все отмеченные выше режимы повторяются и образуется участок ДЕЖЗ указанной зависимости. Из этого рисунка еще следует, что общий характер изменения графика зависимости $t_c = f(q)$ для

термопар, расположенных на расстояниях $\frac{x}{d} = 29\,$ и 78,5 от входа в трубу, идентичен.

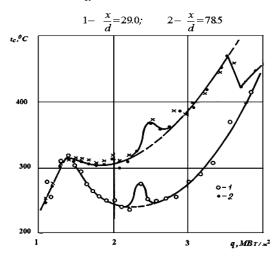


Рис. 4. Зависимость $t_c = f(q)$ при движении н-гептана в горизонтальной трубе (P=5,0 МПа)

На рис.4. приведены результаты исследований теплоотдачи при движении н-гептана в горизонтальной трубе при P=5.0МПа [1, с.73]. Эти графики тоже построены по показаниям термопар, расположенных на расстояниях $\frac{x}{d} = 29.0$ и 78,5 от входа в трубу. Сравнение результатов

исследований, представленных на рис.3 и рис.4, показывает, что графики зависимости $t_c = f(q)$ при различных давлениях в области $t_c \ge t_m$ отличаются между собой. При горизонтальном положении опытной трубы в области улучшенного теплообмена также обнаружено снижение температуры стенки относительно псевдокритической температуры до температуры меньшей критической температуры исследуемой жидкости, аналогично вертикальному положению трубы. В области улучшенного теплообмена разница между максимальным и минимальным значениями температуры стенки составляет приблизительно 80^{0} C (кривая 1.)

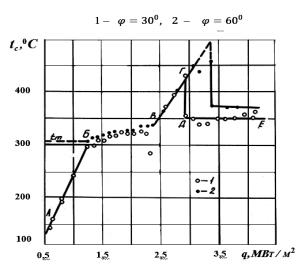


Рис. 5. Зависимость $t_c = f(q)$ для н-гептана при P=4,5 МПа и наклонном положении трубы

Графика зависимости $t_c = f(q)$, представленные на рис.5.

А и Б построены на основании опытных данных, полученных в наклонных трубах, угол наклона которых к горизонтальному положению трубы соответственно составлял 30^0 и 60^0 . Графики строились

по показанию термопары, находящейся на расстоянии $\frac{x}{d} \approx 60$ от входа в трубу. Результаты исследований показали, что характер изменения графика зависимости $t_c = f(q)$ не зависит от положения трубы.

Резюме

Анализ результатов исследований теплоотдачи при движении н-гептана в наклонных трубах показал, что общий характер изменения графика зависимости $t_c = f(q)$ не зависит от положения трубы, в рассматриваемых случаях также наблюдается первый и второй улучшенные режимы теплоотдачи, которые сопровождаются пульсациями давления жидкости и температуры охлаждаемой поверхности, подобно вертикальному и горизонтальному положениям трубы.

Список литературы

- 1. Практические рекомендации по расчёту теплоотдачи турбулентных потоков при сверхкритических давлениях.// Энергетика, Известие Вузов СССР, №10, 1990 г.
- 2. Влияние направления движения и положения трубы на теплоотдачу н-гептана при турбулентном течении и сверхкритических давлениях. // дисс. на соиск. уч.степ.к.т.н. Баку 1989, 137с.
- 3. Рекомендации для оценки интенсивности теплоотдачи при опускном движении жидкости. // Проблемы энергетики. № 4, 2007. 152 с.
- 4. Конвертный теплообмен при вынужденном и при свободном движении предельных и ароматических углеводородов при сверхкритических давлениях.// Тезисы докладов международного форума по тепло и массообмену. Минск, 1988.