Непересекающиеся окружности на поверхности сферы
Куразов Т. А., Куспаева В. Н. Непересекающиеся окружности на поверхности сферы // Научный журнал №10 (11), 2016. - С. {см. журнал}. Тип лицензии на данную статью – CC BY 3.0. Это значит, что Вы можете свободно цитировать данную статью на любом носителе и в любом формате при указании авторства.
Куразов Туретай Аманжолович / Kurazov Turetai Avanjolovish - профессор, кафедра физики конденсированного состояния, физико-математический факультет, Актюбинский региональный государственный университет имени К. Жубанова;
Куспаева Венера Нургалиевна / Kuspaeva Venera Nurgalievna - заведующая отделением, Актюбинский колледж нефти и газа, г. Актобе, Республика Казахстан
Аннотация: одной из нерешенных проблемных задач по математике из «Википедии» является определение максимального количества непересекающихся окружностей единичного радиуса на поверхности сферы с радиусом R [1. от 25.08.2016]. При размещении непересекающихся окружностей на поверхности сферы применим способ размещения окружностей «независимыми гирляндами», когда все окружности данного ряда касаются дуги окружности, образованной сечением поверхности сферы параллельными плоскостями. Аналогичная задача имеется среди нерешенных задач по физике. Определение максимального числа одноименных зарядов на поверхности сферы, радиуса R.
Ключевые слова: экваториальная окружность, главный диаметр, проходящий через центр сферы, нижний и верхний полюса сферы, параллели, гирлянды и кольца
Литература
- Википедия. Нерешенные математические задачи тысячелетия.
- Куразов Т. А., Куспаева В. Н. Построение правильных многоугольников // Научный журнал, 2016. № 10 (11). С. 4-6.
- Справочник по элементарной математике, М., 1978.
- Кенжебаев К. К. Сборник задач по математическому анализу. г. Актобе, 2014. 388 с.
- Куразов Т. А. Сборник задач по общей физике. г. Алматы, 2012 г.